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Network dynamics

Jamming is limited in
scale-free systems
A large number of complex networks are
scale-free1,2 — that is, they follow a power-
law degree distribution. Here we propose
that the emergence of many scale-free net-
works is tied to the efficiency of transport
and flow processing across these structures.
In particular, we show that for large net-
works on which flows are influenced or
generated by gradients of a scalar distrib-
uted on the nodes, scale-free structures will
ensure efficient processing, whereas struc-
tures that are not scale-free, such as random
graphs3, will become congested.

Many transport processes are induced by
the existence of local gradients of some enti-
ty such as chemical potential, temperature or
concentration. Gradients will also naturally
generate, or influence, flows in complex net-
works. For example, in the case of informa-
tion networks, properties of the nodes (such
as rate of processing and adequacy) will
generate a bias (formulated as a gradient cri-
terion) in the way information is transmit-
ted from a node to its neighbours. Specific
examples include the World Wide Web, dis-
tributed computing4 and social networks
with competitive dynamics5.

A simple model of a transport process
begins by assuming that there are N nodes
whose connections are described by a fixed
substrate network, S. Associated with each
node i is a non-degenerate scalar, hi , which
describes the ‘potential’ of the node. Then
the gradient network can be constructed
as the collection of directed links pointing
from each node to whichever of its near-
neighbours on S or itself has the highest
potential. It can be shown that all non-
degenerate gradient networks are forests —
that is, they have no loops (except for self-
loops) and consist only of trees. Further-
more, if S is a simple random graph3, in

which each pair of nodes is linked with prob-
ability P, and the scalars hi are independent
identically distributed random variables,
then the distribution of the number of links
pointing to each node (the in-degree distrib-
ution) becomes (equation (1); derivation to
be published elsewhere)

In the limit N → � and P → 0, such that the
average degree z�NP �constant��1, the
exact degree distribution (equation (1))
becomes the power law R(l) � l�1, with a
finite-size cut-off at lc�z (Fig. 1a). In this
limit, therefore, gradient networks are scale-
free. This is surprising6 because the substrate
S is not scale-free, and in the same limit it has
a ‘bell-curve’ degree distribution. Alterna-
tively, if the substrate network S is scale-free,

as in a Barabási–Albert network1, then the
associated gradient network is also scale-free
(Fig. 1b) and is characterized by the same
exponent.

For a network S, where the flow is
processed at nodes in a finite time (such as in
the routing of a packet), the quality of flow
processing can be quantified by considering
the jamming or congestion factor, which is
defined as (equation (2))

where Nreceive is the number of nodes that
receive gradient flow and Nsend is the number
of nodes that send it. Note that J is a queuing
characteristic, rather than an actual
throughput measure. Certainly, 0�J�1,
with J�1 corresponding to maximal conges-
tion (vanishing number of receivers/proces-
sors) and J�0 to no congestion. For a ran-
dom substrate network, the expression of J
simply follows from equations (1) and (2)
which, in the large network scaling limit,
where P is constant and N → �,becomes

where O(1/N) indicates corrections of order
1/N.

Random networks therefore become
maximally congested in that limit. For scale-
free networks, however, the conclusion in
the same limit is drastically different. In that
case, J tends to a positive constant bounded
away from unity — that is, scale-free net-
works are not prone to jamming. Figure 1c
compares the congestion as a function of
N for both random and scale-free substrate
networks.
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Figure 1 Degree distributions of gradient networks and jamming.

a, Comparison between the exact formula (equation (1), green

line) and numerical simulations (ellipses). Here N�1,000,

P�0.1 (z�100); slope (dashed red line) is �1. b, Degree distri-

butions of the gradient network and the substrate, when the sub-

strate is a Barabási–Albert scale-free graph with parameter m (for

m�1, in black: R(l), circles; P(k), full line. For m�3, in purple:

R(l), diamonds; P(k) , dashed line); N�105. c, Jamming coeffi-

cient J for random graphs (circles, P�0.05; diamonds, P�0.1;

orange line, P�0.05, exact expression; red line, P�0.1, exact

expression) and scale-free networks (pink, m�1; green, m�3).

Each data point is the average of 104 runs in a and 103 runs in b.
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